Principal Components Analysis

Trick: Rotate Coordinate Axes

Suppose we have a population measured on p random variables $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{p}}$. Note that these random variables represent the p -axes of the Cartesian coordinate system in which the population resides. Our goal is to develop a new set of p axes (linear combinations of the original paxes) in the directions of greatest variability:

This is accomplished by rotating the axes.

Algebraic Interpretation - 1D

- Given m points in a n dimensional space, for large n, how does one project on to a 1 dimensional space?

- Choose a line that fits the data so the points are spread out well along the line

Algebraic Interpretation - 1D

- Formally, minimize sum of squares of distances to the line.

- Why sum of squares? Because it allows fast minimization, assuming the line passes through 0

PCA Eigenvalues

A 2D Numerical Example

PCA Example -STEP 1

- Subtract the mean
from each of the data dimensions. All the x values have \bar{x} subtracted and y values have \bar{y} subtracted from them. This produces a data set whose mean is zero.
Subtracting the mean makes variance and covariance calculation easier by simplifying their equations. The variance and co-variance values are not affected by the mean value.

PCA Example -STEP 1

http://kybele.psych.cornell.edu/~edelman/Psych-465-Spring-2003/PCA-tutorial.pdf

DATA:	
x	y
2.5	2.4
0.5	0.7
2.2	2.9
1.9	2.2
3.1	3.0
2.3	2.7
2	1.6
1	1.1
1.5	1.6
1.1	0.9

ZERO MEAN DATA:	
x	y
.69	.49
-1.31	-1.21
.39	.99
.09	.29
1.29	1.09
.49	.79
.19	-.31
-.81	-.81
-.31	-.31
-.71	-1.01

PCA Example -STEP 1

http://kybele.psych.cornell.edu/~edelman/Psych-465-Spring-2003/PCA-tutorial.pdf

Figure 3.1: PCA example data, original data on the left, data with the means subtracted on the right, and a plot of the data

PCA Example -STEP 2

- Calculate the covariance matrix

$$
\operatorname{cov}=\left(\begin{array}{cc}
.616555556 & .615444444 \\
.615444444 & .716555556
\end{array}\right)
$$

- since the non-diagonal elements in this covariance matrix are positive, we should expect that both the x and y variable increase together.

PCA Example -STEP 3

- Calculate the eigenvectors and eigenvalues of the covariance matrix

$$
\text { eigenvalues }=\binom{.0490833989}{1.28402771}
$$

eigenvectors $=-.735178656-.677873399$ $.677873399-.735178656$

PCA Example -STEP 3

http://kybele.psych.cornell.edu/~edelman/Psych-465-Spring-2003/PCA-tutorial.pdf

Figure 3.2: A plot of the normalised data (mean subtracted) with the eigenvectors of the covariance matrix overlayed on top.
-eigenvectors are plotted as diagonal dotted lines on the plot.

- Note they are perpendicular to each other.
- Note one of the eigenvectors goes through the middle of the points, like drawing a line of best fit.
-The second eigenvector gives us the other, less important, pattern in the data, that all the points follow the main line, but are off to the side of the main line by some amount.

PCA Example -STEP 4

- Reduce dimensionality and form feature vector the eigenvector with the highest eigenvalue is the principle component of the data set.

In our example, the eigenvector with the larges eigenvalue was the one that pointed down the middle of the data.

Once eigenvectors are found from the covariance matrix, the next step is to order them by eigenvalue, highest to lowest. This gives you the components in order of significance.

PCA Example -STEP 4

Now, if you like, you can decide to ignore the components of lesser significance.

You do lose some information, but if the eigenvalues are small, you don't lose much

- n dimensions in your data
- calculate n eigenvectors and eigenvalues
- choose only the first p eigenvectors
- final data set has only p dimensions.

PCA Example -STEP 4

- Feature Vector

FeatureVector $=\left(\right.$ eig $_{1}$ eig $_{2}$ eig $_{3} \ldots$ eig $\left._{n}\right)$ We can either form a feature vector with both of the eigenvectors:

$$
\left[\begin{array}{cc}
-.677873399 & -.735178656 \\
-.735178656 & .677873399
\end{array}\right]
$$

or, we can choose to leave out the smaller, less significant component and only have a single column:

$$
\begin{array}{r}
-.677873399 \\
-.735178656
\end{array}
$$

PCA Example -STEP 5

- Deriving the new data

FinalData $=$ RowFeatureVector \mathbf{x} RowZeroMeanData
RowFeatureVector is the matrix with the eigenvectors in the columns transposed so that the eigenvectors are now in the rows, with the most significant eigenvector at the top
RowZeroMeanData is the mean-adjusted data transposed, ie. the data items are in each column, with each row holding a separate dimension.

PCA Example -STEP 5

FinalData transpose:
dimensions along columns

x	y
-.827970186	-.175115307
1.77758033	.142857227
-.992197494	.384374989
-.274210416	.130417207
-1.67580142	-.209498461
-.912949103	.175282444
.0991094375	-.349824698
1.14457216	.0464172582
.438046137	.0177646297
1.22382056	-.162675287

PCA Example -STEP 5

http://kybele.psych.cornell.edu/~edelman/Psych-465-Spring-2003/PCA-tutorial.pdf

Figure 3.3: The table of data by applying the PCA analysis using both eigenvectors, and a plot of the new data points.

Reconstruction of original Data

- If we reduced the dimensionality, obviously, when reconstructing the data we would lose those dimensions we chose to discard. In our example let us assume that we considered only the x dimension...

Reconstruction of original Data

http://kybele.psych.cornell.edu/~edelman/Psych-465-Spring-2003/PCA-tutorial.pdf

X
-. 827970186
1.77758033
-. 992197494
-. 274210416
-1.67580142
-. 912949103
. 0991094375
1.14457216
. 438046137
1.22382056

Figure 3.5: The reconstruction from the data that was derived using only a single eigenvector

