Principal Components Analysis



Trick: Rotate Coordinate Axes

Suppose we have a population measured on p random
variables Xg,...,X,. Note that these random variables
represent the p-axes of the Cartesian coordinate system in
which the population resides. Our goal is to develop a new
set of p axes (linear combinations of the original p axes) in
the directions of greatest variability:

This Is accomplished by rotating the axes.



Algebraic Interpretation — 1D

« Given m points in a n dimensional space, for large n,
how does one project on to a 1 dimensional space?

* Choose a line that fits the data so the points are spread
out well along the line



Algebraic Interpretation — 1D

« Formally, minimize sum of squares of distances to the line.

« Why sum of squares? Because it allows fast minimization,
assuming the line passes through O
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A 2D Numerical Example



PCA Example —-STEP 1

 Subtract the mean

from each of the data dimensions. All the x
values have x subtracted and y values have y
subtracted from them. This produces a data set
whose mean Is zero.

Subtracting the mean makes variance and
covariance calculation easier by simplifying their
equations. The variance and co-variance values
are not affected by the mean value.



PCA Example —-STEP 1

http://kybele.psych.cornell.edu/~edelman/Psych-465-Spring-2003/PCA-tutorial.pdf

ZERO MEAN DATA:

DATA:
X V X y
25| 24 .69 49
05 0.7 -1.31 -1.21
22| 29 .39 .99
19| 2.2 .09 29
31| 3.0 1.29 1.09
23| 2.7 49 79
2 1.6 19 -.31
L | P
1.1 | 0.9 -3l -3l
-71 -1.01




PCA Example —-STEP 1

http://kybele.psych.cornell.edu/~edelman/Psych-465-Spring-2003/PCA-tutorial.pdf

Criginal PCA data
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Figure 3.1: PCA example data, onginal data on the left. data with the means subtracted
on the right, and a plot of the data



PCA Example —STEP 2

e Calculate the covariance matrix
CoV = 016555556 .615444444
015444444 716555556

 since the non-diagonal elements in this
covariance matrix are positive, we should expect
that both the x and y variable increase together.



PCA Example —STEP 3

« Calculate the eigenvectors and
eigenvalues of the covariance matrix

eigenvalues :{0490833989}

eigenvectors =

1.28402771
(735178656 -.677873399
677873399 -.735178656




PCA Example —STEP 3

http://kybele.psych.cornell.edu/~edelman/Psych-465-Spring-2003/PCA-tutorial.pdf
seigenvectors are plotted

Mean adjusted data with eigenvectors overlayed
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Figure 3.2: A plot of the normalised data (mean subtracted) with the eigenvectors of follow the mall'-] Ilne’ but
the covariance matrix overlayed on top. are off to the side of the

main line by some
amount.



PCA Example —-STEP 4

* Reduce dimensionality and form feature vector

the eigenvector with the /Aighest eigenvalue is the
principle component of the data set.

In our example, the eigenvector with the larges
eigenvalue was the one that pointed down the middle of
the data.

Once eigenvectors are found from the covariance matrix,
the next step is to order them by eigenvalue, highest to
lowest. This gives you the components in order of
significance.



PCA Example —-STEP 4

Now, if you like, you can decide to /gnore the
components of lesser significance.

You do lose some information, but if the eigenvalues are
small, you don’t lose much

n dimensions in your data

calculate n eigenvectors and eigenvalues
choose only the first p eigenvectors

final data set has only p dimensions.



PCA Example —-STEP 4

Feature Vector
FeatureVector = (eig, eig, eig; ... eig,,)

We can either form a feature vector with both of
the eigenvectors:

-.6/77873399 -.7351/7/8656
-./35178656 .67/7/873399

or, we can choose to leave out the smaller, less
significant component and only have a single
column:

- .67/7/873399
- ./35178656



PCA Example —STEP 5

* Deriving the new data

FinalData = RowFeatureVector x RowZeroMeanData

RowFeatureVector Is the matrix with the eigenvectors in
the columns fransposed so that the eigenvectors are
now Iin the rows, with the most significant eigenvector at
the top

RowZeroMeanData IS the mean-adjusted data
fransposed, ie. the data items are in each
column, with each row holding a separate

dimension.



PCA Example —STEP 5

FinalData transpose:
dimensions along columns

X y
-.827970186 -.175115307
1.77758033 142857227
-.992197494 1384374989
-.274210416 130417207
-1.67580142 -.209498461
-.912949103 175282444
10991094375 -.349824698
1.14457216 0464172582
438046137 0177646297

1.22382056 -.162675287



PCA Example —STEP 5

http://kybele.psych.cornell.edu/~edelman/Psych-465-Spring-2003/PCA-tutorial.pdf

Data transformed with 2 eigenvectors
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Figure 3.3: The table of data by applying the PCA analysis using both eigenvectors,
and a plot of the new data points.



Reconstruction of original Data

* If we reduced the dimensionality, obviously,
when reconstructing the data we would lose
those dimensions we chose to discard. In our
example let us assume that we considered only
the x dimension...



Reconstruction of original Data

http://kybele.psych.cornell.edu/~edelman/Psych-465-Spring-2003/PCA-tutorial.pdf

Criginal data restored using only a single eigenvector
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1.22382056 Figure 3.5: The reconstruction from the data that was derived using only a single eigen-

vector



