
Principal Components Analysis



This is accomplished by rotating the axes.

Suppose we have a population measured on p random 

variables X1,…,Xp. Note that these random variables 

represent the p-axes of the Cartesian coordinate system in 

which the population resides. Our goal is to develop a new 

set of p axes (linear combinations of the original p axes) in 

the directions of greatest variability:

X1

X2

Trick: Rotate Coordinate Axes



Algebraic Interpretation – 1D

• Given m points in a n dimensional space, for large n, 
how does one project on to a 1 dimensional space?

• Choose a line that fits the data so the points are spread 
out well along the line



• Formally, minimize sum of squares of distances to the line.

• Why sum of squares? Because it allows fast minimization, 
assuming the line passes through 0

Algebraic Interpretation – 1D
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PCA Eigenvalues
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A 2D Numerical Example



PCA Example –STEP 1

• Subtract the mean

from each of the data dimensions. All the x 

values have x subtracted and y values have y 

subtracted from them. This produces a data set 

whose mean is zero.

Subtracting the mean makes variance and 

covariance calculation easier by simplifying their 

equations. The variance and co-variance values 

are not affected by the mean value.



PCA Example –STEP 1

DATA:

x      y

2.5 2.4

0.5 0.7

2.2 2.9

1.9 2.2

3.1 3.0

2.3 2.7

2 1.6

1 1.1

1.5 1.6

1.1 0.9

ZERO MEAN DATA:

x y    

.69 .49

-1.31 -1.21

.39 .99

.09 .29

1.29 1.09

.49 .79

.19 -.31

-.81 -.81

-.31 -.31

-.71 -1.01

http://kybele.psych.cornell.edu/~edelman/Psych-465-Spring-2003/PCA-tutorial.pdf



PCA Example –STEP 1

http://kybele.psych.cornell.edu/~edelman/Psych-465-Spring-2003/PCA-tutorial.pdf



PCA Example –STEP 2

• Calculate the covariance matrix

cov =       .616555556    .615444444

.615444444    .716555556

• since the non-diagonal elements in this 

covariance matrix are positive, we should expect 

that both the x and y variable increase together.



PCA Example –STEP 3

• Calculate the eigenvectors and 

eigenvalues of the covariance matrix

eigenvalues = .0490833989

1.28402771

eigenvectors = -.735178656   -.677873399

.677873399  -.735178656 



PCA Example –STEP 3

http://kybele.psych.cornell.edu/~edelman/Psych-465-Spring-2003/PCA-tutorial.pdf

•eigenvectors are plotted 

as diagonal dotted lines 

on the plot. 

•Note they are 

perpendicular to each 

other.

•Note one of the 

eigenvectors goes through 

the middle of the points, 

like drawing a line of best 

fit. 

•The second eigenvector 

gives us the other, less 

important, pattern in the 

data, that all the points 

follow the main line, but 

are off to the side of the 

main line by some 

amount.



PCA Example –STEP 4

• Reduce dimensionality and form feature vector
the eigenvector with the highest eigenvalue is the 
principle component of the data set.

In our example, the eigenvector with the larges 
eigenvalue was the one that pointed down the middle of 
the data. 

Once eigenvectors are found from the covariance matrix, 
the next step is to order them by eigenvalue, highest to 
lowest. This gives you the components in order of 
significance. 



PCA Example –STEP 4

Now, if you like, you can decide to ignore the 
components of lesser significance. 

You do lose some information, but if the eigenvalues are 
small, you don’t lose much

• n dimensions in your data 

• calculate n eigenvectors and eigenvalues

• choose only the first p eigenvectors

• final data set has only p dimensions.



PCA Example –STEP 4

• Feature Vector

FeatureVector = (eig1 eig2 eig3 … eign)

We can either form a feature vector with both of 
the eigenvectors:

-.677873399    -.735178656 

-.735178656     .677873399 

or, we can choose to leave out the smaller, less 
significant component and only have a single 
column:

- .677873399 

- .735178656



PCA Example –STEP 5

• Deriving the new data

FinalData = RowFeatureVector x RowZeroMeanData

RowFeatureVector is the matrix with the eigenvectors in 

the columns transposed so that the eigenvectors are 

now in the rows, with the most significant eigenvector at 

the top

RowZeroMeanData is the mean-adjusted data 

transposed, ie. the data items are in each 

column, with each row holding a separate 

dimension.



PCA Example –STEP 5

FinalData transpose: 
dimensions along columns

x y

-.827970186 -.175115307

1.77758033 .142857227

-.992197494 .384374989

-.274210416 .130417207

-1.67580142 -.209498461

-.912949103 .175282444

.0991094375 -.349824698

1.14457216 .0464172582

.438046137 .0177646297

1.22382056 -.162675287



PCA Example –STEP 5

http://kybele.psych.cornell.edu/~edelman/Psych-465-Spring-2003/PCA-tutorial.pdf



Reconstruction of original Data

• If we reduced the dimensionality, obviously, 

when reconstructing the data we would lose 

those dimensions we chose to discard. In our 

example let us assume that we considered only 

the x dimension…



Reconstruction of original Data

x

-.827970186 

1.77758033 

-.992197494 

-.274210416 

-1.67580142 

-.912949103 

.0991094375 

1.14457216 

.438046137 

1.22382056

http://kybele.psych.cornell.edu/~edelman/Psych-465-Spring-2003/PCA-tutorial.pdf


