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Abstract 

One of the most important structural components of engine compartment assembly in a car body is the S-

rail. S-rails has significant role in absorbing energy during crash events and therefore it is designed for 

efficient behavior in such conditions. Driving the peak crushing force of the S-rails is one of the important 

objectives in the design process of such structures. Peak crushing force is exactly the force applied to the 

downstream components and then will be transferred to the cabin of vehicle. In this paper, closed form 

solution is performed to drive the peak crushing force of the S-rails. Results of such analytical model 

finally are compared with the results of finite element simulation. Good agreement between such results 

shows the accuracy of the proposed analytical model. 

Keywords: S-rail, Peak crushing force, Closed-form solution, Finite element simulation.

1. Introduction 

Structural components of the front of the car body 

to avoid interference with other components are 

usually curved. One of the most important structural 

components of front of the car engine compartment 

which absorb most of car accident energy is the S-

rail. Crushing behavior of the s-rail has been studied 

experimentally, numerically and analytically by some 

previous works. Ni [1] represented the impact 

response of curved box beam using both numerical 

methods and empirical formulas. Kim and Wierzbicki 

[2] addressed the design aspect of a front side rail 

structure of an automobile body concerning weight 

efficiency and crush energy absorption. They 

investigated various method of internal strengthening 

in order to improve structural crashworthiness and 

performance. Kim and Wierzbicki [3] derived the 

analytical solution of crushing resistance of thin-

walled S-shape frames with rectangular cross-section 

and compared the results with those of numerical 

simulation. Zheng and Wierzbicki [4] represented a 

combined experimental, analytical and numerical 

study on the quasi static axial crushing of thin-walled 

aluminum S-rail with circular cross-section. Hosseini-

Tehrani [5] showed that a hybrid S-frame made of 

steel and alumimium gives better characteristic 

regarding passenger safety and weight efficiency.   

Simplified model of the s-rail is depicted in 

Figure1. According to this figure any variation of 

geometric parameters which are denoted as radius of 

curvature (R), curve angle (θ), web width (W), wall 

thickness (t), and offset of two-end par (D) will lead 

to new design and new behavior. It should be noted 

that both the straight lengths (l1 and l3) and oblique 

length (l2) are derived variables, depending on the 

values of the curve angle and curve radius. 

In this paper, theoretical analysis is performed to 

obtain peak crushing force of the s-rail with respect to 

geometrical design parameters. In this way 

Castiglione’s strain energy theory is used to 

determine cross sectional bending loads along the s-

rail. Secondly, effects of section geometry on location 

of the neutral axis are studied. Quasi static simulation 

of the s-rail is then performed using commercial 

software ABAQUS/Explicit. Finally results of 

numerical and theoretical analysis are compared. 

Such comparisons show good accuracy of the 

analytical approach presented in this paper.  

2. General formulation 

The load and boundary conditions applied on the 

S-rail are considered according to the Figure 2. Free-

body diagram of the S-rail under the applied load P in 

accordance to the Figure 2 is depicted in Figure 3 

where Qf, Pf and Qa are the reaction forces and Ma 

and Mf are the reaction moments 
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Fig1. Geometrical design parameters of the idealized S-rail 

 

 
 

Fig2. Load and boundary conditions considered in the mathematical model 

 

 

 

Fig3. Free-body diagram of the S-rail under the applied load P 

 

 
 

Fig4. Location of the critical points a, f, P1 and P2 
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The axial force and bending moment at the point a 

can be obtained from [5]: 

�� = �� ∗ �                  (2) 

Where: 

ℎ = �	(���( − sin ) + �(1 − cos )) + �(1 −cos )(��� +� sin )��� + ����
� sin 2 + ����

	 ((sin (��� +� sin )) + � cos (1 − cos )) + (�(1 − 2 cos ) +��� sin )((��� + 2� sin ) + ��� cos )� −  �
! (1 −cos 2) + �	(��� + 2� sin  + ��� cos ) sin  −

�	(�(1 − 2cos ) + ��� sin )(1 − cos ) + " �#$�
	 (6) 

&' = ��� + 2� + ��� + �()                                        (7) 
,' = �-.�

	 + �(��� + �(1 − cos )) + ((��� +
sin )��� + ����

	 sin ) + ((��� + 2� sin  +
��� cos ) − (1 − cos )) + �#$�

	                              (8) 
  ℎ' = �	( − sin ) + �(1 − cos )��� +����

	 cos  + (�(1 − 2 cos ) + ��� sin ) +� sin  + "�()                                   (9)  
 

The axial force and bending moment at the point 

P1 also can be obtained from [5]: 

where: 

At the equations 12 and 13,  θ1 is an angle on the 

curved part which indicates location of the point p. 

When the external load P is applied, the S-rail 

deforms elastically until yield is reached in the extrme 

fibers on the most stressed sections. Assuming that 

the beam is made of elastic perfectly plastic material, 

increasing the external load, the plastic region in the 

cross section will be increased. In the limit, the whole 

section becomes plastic and then P =&2�3  . The load &2�3 is the collapse load which is also called peak 

crushing force. 

3. Position of neutral axis  

Stress distribution across a fully plastic cross 

section is depicted in Figure 5. 

For fully plastic sections, the axial force and 

bending moment are as following: 

Where 45 and 65 are the fully plastic bending 

moment and fully plastic axial force, respectively. 

Also, Y is yield stress of constitutive material which 

is considered as 200MPa in the present work. 

Parameters A and Q in equations 14 and 15 are as 

following for square sections: 

where W is known as the web width and t is the 

wall thickness. Consequently, axial force and bending 

moment for a fully plastic section are equal to: 

45 = 7	 89	:                                 (18) 

Because the section is under the axial force and 

bending moment simultaneously, neutral axis is not 

located in the center of section. Whereas the cross 

section is considered as squared tube, there are 

several different cases for neutral axis as following: 

Case a: Neutral axis is positioned between center-line 

of the cross-section and inner surface of the web. 

Case b: Neutral axis is in the web. 

Case c: Neutral axis is outside of the cross-section. 

Such three different case are shown in Figure 6. 

According to the Figure 6, for each cases the 

following equations can be considered: 

4� = ;� ∗ �                (1) 

 ;� = <=>?<>=<>)?<)'   ,         �� = )=>?)>=<>)?<)'                           (3) 
& = �-.�

	 + �(��� + �(1 − cos )) + ((��� +
� sin )��� + �-.�

	 cos ) + �((��� + 2�BCD  +
��� cos ) − �(1 − cos )) + E�()7 − �#$�

	           (4) 
 , = �-.#

7 + �(���	  +  �
	 (1 − cos 2) + 2����(1 −

cos )) + ((��� + � sin )	 ��� + �#$�
7 cos  + 2(��� +

� sin ) cos  ����
	 ) + �((��� + 2� sin  +

��� cos )	  +  �
	 (1 − cos 2) − 2(��� +

2� sin  + ��� cos )�(1 − cos )) + E���7 − ����
	     (5) 

  61H = E1�                    (10) 41H = ;1�                   (11) 
 E1 = cos 1 + �� ∗ sin 1                   (12) ;1 = ;� + �J1 − cos 1K − ��(��� + � sin 1)   (13) 

65 = L 8MN = 8N   (14) 45 = L 8OMN = 8�   (15) 

N = 49:                         (16) � = 7	 9	:                              (17) 

65 = 489:                            (19) 

Case .a:   U = 1 − 4 3V D	        (20) 
Case.b:      U = !7 (1 − D)       (21) Case c:           U = 0   D = ±1       (22) 
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where  U = YYZ  and  D = [[Z .  In Figure 7, diagram of 

m-n is depicted and the cases a, b, c has been shown. 

4 Effects of geometric parameters on the 

position of neutral axis 

Due to geometrical dimensions, web width (w), 

wall thickness (t), curved angle (θ) and radius of 

curvature (R), one of the previous mentioned cases 

will be occurred at the critical points a and p (see 

Figure 4). Therefor by referring to geometrical 

parameters, position of neutral axis of the tube should 

be determined and then the peak crushing force can 

be calculated. 

As it has been mentioned, with applying axial load 

on the S-rail, it deforms elastically and therefore by 

considering equations 1,2,10 and 11 bending to axial 

load ratio at the points a and P1 are as following: 

Cross sectional axial and bending loads are 

increased by increasing the external load. Therefore, 

axial and bending loads at the critical sections (a and 

P1) will be increased by increasing the external load 

until the stress value at the outer fiber of cross section 

reach to yield. In this paper, it is assumed that the 

bending to moment ratio is remained constant after 

onset of plastic yielding at the outer fiber. So the 

relations between bending and moment at the critical 

cross sections a and P1 can be obtained from: 

Equations 25 and 26 will be called as load line 

equations in the following sections. Related Load 

lines to each section could be depicted in the similar 

surface of m-n diagram. When one load line cross 

each case diagram could guide to find the exact 

position of neutral axis. Following, the effect of 

parameters including radius of curvature (R), curved 

angle (θ) and web width (w) in neutral axis are 

studied. Effect of geometrical parameters on the 

position of neutral axis at point a is shown in Figure 8 

which the value of geometrical dimensions is basis on 

R=550 mm, θ = 25∘ , t=2 mm and W=50. 

 

 
Fig5. stress distribution in the section of a fully plastic [6] 

 

 
 

Fig6. position of the neutral axis 

 

Y-[- = ;�                (23) 
Y][] = ^]_]                 (24) 

U� = ;� [ZYZ D�           (25) 

U1 = ^]_]
[ZYZ D1          (26) 
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Fig7. Diagram of different cases of natural axis 

 

 

 

     

 
Fig8. Effect of geometrical design parameters on the position of neutral axis at the critical point a

      Figure 9 shows the similar diagrams of the figure 

8 for the critical point P. 

In Figure 10, effects of each geometrical 

parameters on the slope of load line which is effective 

to determine the position of neutral axis is shown. 

Figures 8 to 10 clearly show that the radius of 

curvature has the opposite relationship with slope of 

load line and slope of this diagram is going down by 

increasing the radius. This decreasing of slope of load 

line which is caused by increasing of radius, will be 

speeded up at point a. In the other hand with 

increasing the curved angle (), slope of load line is 

going up too at points a and P1. The slope of load line 

also will be decreased by increasing web width at 

points a and P1.  

The values of geometrical parameters which cause 

each cases of a and b at the points a and P for the 

basic geometry (t=2 mm, w=50 mm,  = 25, R=550  

mm ) are presented in table 1. 

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1

m

n

case a

case b

case c

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5

m

n

case a

case b

R= 250

R=400

R=550

R=750

R=800

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5

m

n

case a

case b

W=40

W=45

W=50

W=55

W=60

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.iu

st
.a

c.
ir 

at
 2

0:
04

 IR
S

T
 o

n 
F

rid
ay

 M
ar

ch
 3

rd
 2

01
7

 [
 D

ow
nl

oa
de

d 
fr

om
 ie

.iu
st

.a
c.

ir
 o

n 
20

25
-0

5-
25

 ]
 

                             5 / 11

http://www.iust.ac.ir/ijae/article-1-203-en.html
https://ie.iust.ac.ir/ijae/article-1-203-fa.html


  451                        Closed-form solution for peak crushing….. 

International Journal of Automotive Engineering  Vol. 3, Number 2, June 2013  

 

    
 

 
 

Fig9. Effect of geometrical design parameters on the position of neutral axis at the critical point p. 

    

 

 

 

Fig10. Effect of geometrical parameters on the slope of load line in the critical points a and p 
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Table 1- Values of geometrical parameters which cause each cases of a and b at the points a and P for the basic geometry of t=2 mm, 

w=50 mm, ` = ab and R=550 mm 

 

 

5. Extraction of peak crushing force 

Based on determined position of neutral axis at 

points a and P1, calculation of peak crushing force is 

already possible. The equation of axial load and 

bending moment along cross section could be written 

as below: 

where Y is known as the yield stress of the 

material and c is location of neutral axis which is 

shown in figure 5. Considering section a as critical 

section and also assuming occurrence of case a at this 

section, below equation will be derived as following 

by substituting equation 1 in equation 20 and 

considering Na = P: 

From solving above equation,  c2�3,H can be 

derived as following: 

Also considering section a as critical section and 

assuming occurrence of case b at this section, below 

equation will be derived as following by substituting 

equation 1 in equation 21: 

From solving above equation, c2�3,H will be 

derived as following: 

Considering section P1 as critical section and 

assuming occurrence of case a at this section, below 

equation will be derived as following by substituting 

equation 10 and 11 in equation 20: 

From solving above equation, c2�3,	  will be 

derived as following: 

Also considering section P1 as critical section and 

assuming occurrence of case b at this section, below 

equation will be derived as following by substituting 

equation 10 and 11 in equation 20: 

 From solving above equation, c2�3,	  will be 

derived as following: 

 Case T W θ R 

 

 
Point a 

Case a 2  mm 50   mm 25 R<1000 mm 

Case a 2  mm 50  mm θ>14 550 

Case a 2  mm W<65 mm 25 550 

Case b 2  mm 50   mm 25 R>1000 mm 

Case b 2  mm 50  mm θ <14 550 

Case b 2  mm W>65 mm 25 550 

 

 
Point p 

Case a 2  mm 50   mm 25 R<650 mm 

Case a 2  mm 50  mm θ >20 550 

Case a 2  mm W<55 mm 25 550 

Case b 2  mm 50   mm 25 R>650 mm 

Case b 2  mm 50  mm θ <20 550 

Case b 2  mm W>55 mm 25 550 

4 = L dOMN = 8:e	 + 28:((f	
	) − g	)              (27) 6 = L dMN = 48:g                                                     (28) 

h !7[Z�i �	 + h^-YZi � − 1 = 0                                      (29)

c2�3,H = hj-kZilmhj-kZi�ln o�pZ�q
	n o�pZ�q                                      (30)

h^-YZi � + h !7[Zi � = !7                                                  (31) 

crst,H = n !/7
hj-kZilh o�pZiq                                               (32) 

h !�]�7[Z�i �	 + h^]YZi v − 1 = 0                                     (33)

c2�3,	 = wj]kZxlmwj]kZx�ln oy]��pZ�q
	n oy]��pZ�q                                     (34) 

h;v
40i c + h 4�v

360i = 4
3                                             (35)
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Position of neutral axis could be determined 

according to equations represented in section 3 after 

determining geometrical dimensions of S-rail. The 

values of c2�3,H and c2�3,	 could be calculated after 

finding the position of neutral axis .The minimum 

value between Fmax,1 and  Fmax,2 will be selected 

as peak crushing force of the S-rail, because before 

the value of P reaches to maximum value of Fmax , 

plastic collapse will be occurred in minimum value of 

Fmax . 

 Fmax= min{Fmax,1,Fmax,2}                                     (37)  

6. Numerical simulation 

Explicit finite element method has proven 

valuable in solving quasi-static problem. However, it 

should be noted that the explicit solution method is 

developed to model the events in which inertia plays a 

dominant role in the solution such as high speed 

dynamic impact problems. Moreover, the loading rate 

applied in actual quasi-static experiments, 5 mm/min 

is too slow which increases the time step too much. 

Therefore, to perform an accurate, low-cost and 

reliable quasi-static analysis, the inertia effects and 

the time step must be reduced, simultaneously. There 

are two special approaches which could be employed 

in combination to perform accurate and economic 

quasi static analyses using explicit procedure. 

3.1. Mass scaling 

The minimum stable time increment in the explicit 

dynamic analysis can be expressed as 

Where Le is the element length characteristic, E is 

the young’s modulus, and ρ is the material density. 

According to the Eq. (29), artificially scaling up the 

material density by factor of &	 increases the stable 

time increment by factor of &. Therefore total time 

step will be decreased because fewer increments 

required to perform the same analysis. Scaling uo the 

mass, however, increases the inertia effects. 

Therefore, to ensure the quasi-static process, the 

loading rate should be kept very low. Another mass 

scaling method is the scaling down the mass of the 

material so that the inertial forces trial forces will be 

minimized. When the mass is scaling down, the stable 

time increments are increased and the time step of 

analysis will also be increased. Therefore, to reduce 

the time step, the loading rate must be accelerated. 

3.2. Smooth load curve 

Sudden movements cause stress waves which can 

induce noisy or inaccurate solution. Therefore, it is 

needed to apply loading as smooth as possible. A 

typical smooth loading curve is shown in Fig. 11. It is 

clear from this figure, that initial velocity and initial 

slope of curve which is equal to initial acceleration 

are zero. This ensure that loading takes place 

gradually and unnecessary dynamic effects will be 

avoided. 

Several investigators have employed explicit 

procedure for quasi-static analysis. Meguid et al. [7] 

for the used LSDYNA for the quasi-static simulation 

of foam-filled columns. They employed mass scaling 

of 10 to reduce the required solution time. They 

showed that the total kinetic energy and the crushing 

force-displacement response did not change with 

scaling. Aktay et al. [8] also used PAMCRASH for 

the quasi-static simulation for extruded poly styrene 

from filled thin-walled aluminum where mass scaling 

of 1/1000 and applied velocity V=2 m/s have been 

considered. Nagel et al. [9] employed 

ABAQUS/Explicit for the quasi-static simulation of 

tapered thin-walled tubes under oblique loading. The 

loading rate was controlled using the AMPLITUDE 

option and SMOOTH STEP sub-option in 

ABAQUS/Explicit to ensure an accurate and efficient 

quasi-static analysis. 

After a quasi-static analysis two type of tests are 

used for evaluating the results of simulation. First, if a 

simulation is quasi-static, the velocity of the material 

is very small and so that internal forces are negligible. 

Therefore, in this situation, internal energy is nearly 

equal to the work applied by the external forces while 

the kinetic energy is small and should not exceed a 

small fraction of internal energy. Secondly, the load 

displacement response must be independent from 

mass scaling and loading rates. 

Load and boundary conditions consider in the 

present finite element simulation of the s-rail are 

shown in Figure 2. In this finite element analysis, the 

flat plate which is applying the load is modeled as a 

rigid surface and all degrees of its freedom are 

bounded except move in the direction of the applied 

load. The other end of S-rail is completely attached to 

a rigid surface by Tie bonded. The compressive load 

is applied to the S-rail by applying a constant velocity 

to the loaded end. The smooth amplitude is also used 

for applying the velocity. 

crst,	 = z !/7
wj]kZxlw oy]�pZx{                                            (36) 

E
Lt e ρ

=∆     (38) 
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The shape of deformation of the S-rail with 

geometries of R=550 mm , q=25 , W=50 mm and t=2 

mm are shown as examples in Figure 12. These 

shapes of deformation are at the end displacement 

reached to the values of 150, 250 and 400 mm

 

 
 

Fig11. Typical smooth loading curve 

 

Displacement=150 mm Displacement= 250 mm Displacement=400 mm 
 

Fig12. shape of deformation of the S-rail with geometries of R=550 mm , q=25 , W=50 mm and t=2 mm at end displacement of 150, 250 

and 400 mm. 

 

Fig13. Comparison of load-displacement diagram carried out with different values of mass scaling
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Fig14. Comparison between theoretical and numerical results respective to different values of geometrical design variables 

Table 2.comparison between numerical and theoretical results 

Fmax (N) θ (degree) R (mm) t (mm) W (mm) Raws 

Error Theoretical Numerical      

12 17550.9 15414 25 550 1 50 1 

4 26326 25290 25 550 1.5 50 2 

1.13- 35101.9 35499 25 550 2 50 3 

5.46- 43877.4 46275 25 550 2.5 50 4 

4.43 52652 54985 25 550 3 50 5 

4.27- 24377 25418 25 550 2 40 6 

14.1- 26619 30391 25 550 2 45 7 

1.13- 35101 35499 25 550 2 50 8 

1.6 40799 40152 25 550 2 55 9 

3.7 46619 44894 25 550 2 60 10 

0.23- 39887 39978 15 550 2 50 11 

0.1 36283 35906 20 550 2 50 12 

1.13- 35101 35499 25 550 2 50 13 

0.4- 34810 34959 30 550 2 50 14 

5.3 33456 31672 25 250 2 50 15 

6 34441 32352 25 400 2 50 16 

1.13- 35101 35499 25 550 2 50 17 

7.3- 36347 39014 25 750 2 50 18 
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Load-displacement diagram of the S-rail shown in 

figure 12 is depicted in figure 13. For selecting prior 

value of mass scaling, five different values of mass 

scaling are considered and compared in the figure 13.  

Following, obtained results of peak crushing force 

from analytical and numerical models are compared. 

These analyses are based on the geometrical values of  = 25∘ , t=2 mm, W=50 mm and R=550 mm. 

Comparison between theoretical and numerical results 

respective to different values of web width (W), wall 

thicknesses (t), radius of curvature (R) and curve 

angle () are shown in the Figure 14. 

The values of geometrical design parameters and 

obtained results for peak crushing force from 

numerical and analytical analyses correspond to the 

Figure 22 to 25 are presented in table 2. 

Conclusion 

In this paper, at the first step, peak crushing force 

is derived based on the position of neutral axis of 

beam and also the effect of position of neutral axis 

respective to peak crushing force is analyzed. At the 

next step, quasi-static analysis of the s-rail is 

performed using commercial software 

ABAQUS/Explicit and peak crushing force is 

determined. 

At the last step, comparison of numerical and 

analytical results is performed. Such comparison 

shows good agreement between the obtained results. 

Consequently useful equations are derived which can 

be employed for calculating of peak crushing force of 

s-rail that can be used for design of such structures. 
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