Israa Khahtan Sabree, Batool Abd Aladel Jabar,
Volume 20, Issue 3 (9-2023)
Abstract
Abstract. Hydroxyapatite (HA) scaffold is commonly used in the applications of bone tissue engineering due to its bioactivity and equivalent chemical composition to the inorganic constituents of human bone. The present study focused on the fabrication of porous 3D hydroxyapatite scaffold which was modified by polymer coating as a successful strategy to improve the mechanical properties. A 3D porous hydroxyapatite scaffolds were fabricated by gel-casting method by using freshly extracted egg yolk (EY) with (50 and 60)wt% of HA powder. To enhance the mechanical properties, composite PVA/ HA scaffolds were produced by using dip coating in Polyvinyl alcohol (PVA). Fourier transform infrared spectroscopy (FTIR) was used to recognize the functional group associated with the hydroxyapatite scaffolds before and after PVA coating. The physical (density and porosity) and mechanical (compressive strength and elastic modulus) properties were investigated before and after coating. SEM was used to inspect the surface morphology and pore modification of the scaffolds. Wettability was determined by using a water contact angle to analyze the scaffold hydrophobicity. Surface roughness was studied by atomic force microscopy (AFM). It was revealed that the scaffold porosity decreased with increase solid loading of HA powder in the gel and after PVA coating. The findings showed that PVA coating improved mechanical strength of scaffold to be double by covering the small pores and filling microcracks sited on the scaffold strut surfaces, inducing a crack bridging mechanism. The scaffolds’ strength was in the range of trabecular bone strength. This indicates non-load bearing applications.
Nur Aziah Suhada Naim, Muhammad Faiq Abdullah, Sung Ting Sam, Wan Ahmad Radi Wan Ahmad Yaakub,
Volume 22, Issue 2 (6-2025)
Abstract
Despite being an effective material for food packaging, chitosan (CS) exhibited poor ductility when processed into film, which restricted its use in this industry. In this study, composite films with enhanced properties were developed by incorporating polyvinyl alcohol (PVA) into CS through a simple solution casting method. The effects of different PVA/CS weight ratios (70:30, 50:50, and 30:70 w/w) on the morphology, mechanical properties, antibacterial activity, and soil degradation of the composite films were analyzed. Compared to the pristine PVA film, increasing the CS content in the PVA/CS composite film enhanced thickness, stiffness, roughness, antibacterial efficiency, and degradation rate, while reducing tensile strength and elongation at break. Fourier transform infrared (FTIR) spectroscopy revealed the highest intermolecular interactions in the PVA/CS composite film with 70:30 w/w. Antibacterial activity tests and soil burial analysis demonstrated that the PVA:70/CS:30 composite exhibited significantly higher antibacterial activity toward Escherichia coli and Bacillus subtilis bacteria as opposed to PVA film, along with a moderate degradation rate of 76.76% following 30 days soil burial, effectively balancing biodegradability and material integrity. These findings suggest that the PVA:70/CS:30 composite is a promising alternative for sustainable and functional biodegradable packaging solutions.